Quantizing Space-Time in Quantum Complexity Theory

B.M. Terhal, JARA Institute for Quantum Information

RWTH Aachen University

Models of Computation

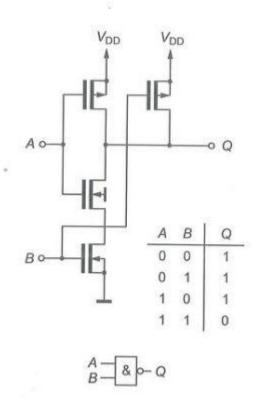
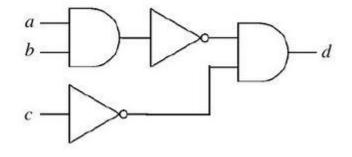


Figure 5: Two-input NAND gate: Circuit diagram and truth table.

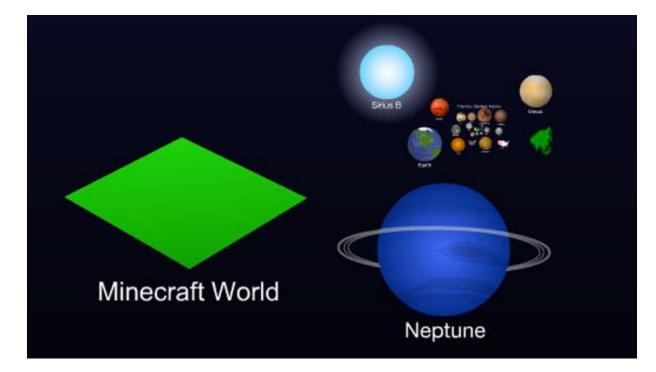


Classical circuit model:



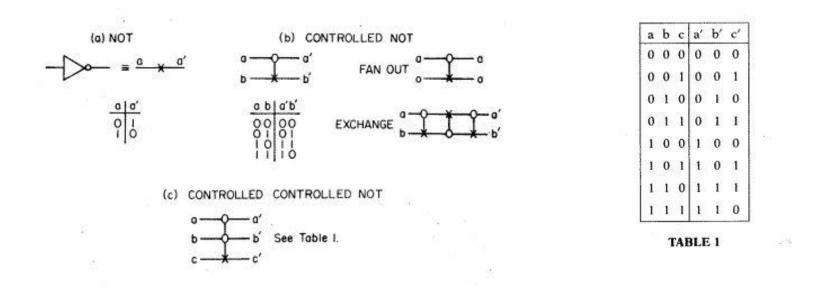
Efficient computation: polynomial in problem size (in bits)

Logic in Minecraft



Surface of a minecraft world (largely flat) is about 10⁸ x 10⁸ blocks (Block is 1m³)

Reversible Computation

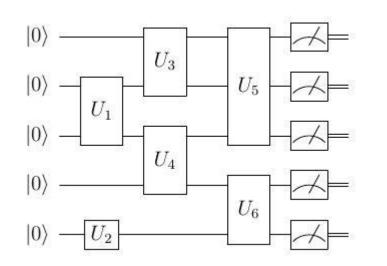


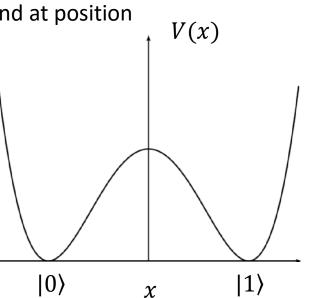
Closed physical systems have reversible dynamics (described by differential equations with derivatives in time, and derivatives in space)

Quantum Computation

Schrödinger equation: $i\hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2} + V(x)\psi(x,t) = H\psi(x,t)$

with interpretation that $|\psi(x,t)|^2$ is the probability for particle with mass *m* to be found at position x at time t.





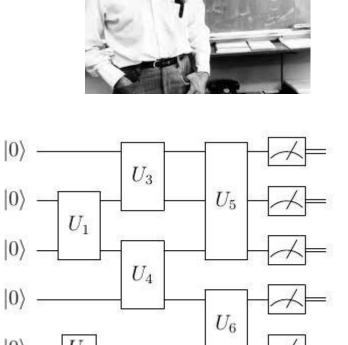
Example of a quantum circuit using unitary gates $U^{-1} = U^{\dagger}$.

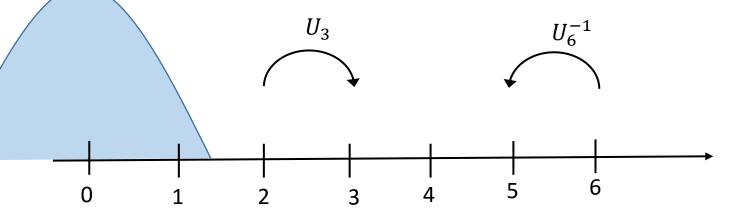
Time-Independent Dynamics

R.P. Feynman, Quantum Mechanical Computers, Optics News Vol.11 (1985)

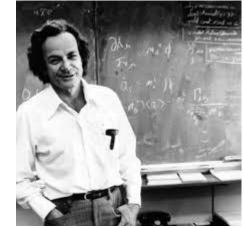
Introduce a master clock which gets updated with every logical step (clock-cycle) as part of the dynamics.

But clock is quantum-mechanical, $|t = 0, ..., L\rangle$





Master clock time t=0...6 represented as a 1D line. Time coordinate represented in space



Stationary State: History State

Mapping from time-dependent circuit to the ground-state of a Hamiltonian H.

Circuit has n qubits and gates U_1, \dots, U_L . Introduce a clock register $|t\rangle$: $|t=0\rangle$ $|t=L\rangle$ and let $H_{circuit}$ $= \sum_{t=1}^{L} (-U_t)$ $\otimes |t\rangle \langle t-1| + h.c. + |t-1\rangle \langle t-1| + |t\rangle \langle t|)$

Ground-state of $H_{circuit}$ is history state of the circuit (for any ξ)

$$|\varphi_{his}\rangle = \frac{1}{\sqrt{L+1}} \sum_{t=0}^{L} U_t \dots U_1 |\xi\rangle \otimes |t\rangle$$

Circuit-to-Hamiltonian Construction

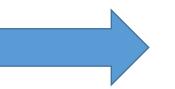
- 1. Used to prove that certain computational problems are hard to solve on a quantum computer, that is, are quantum NP-complete.
 - 2. Has inspired/produced models of how to do universal quantum computation.....

Space-Time circuit-to-Hamiltonian Construction

Instead of one master clock, each particle/degree of freedom/qubit has its own clock.

Space-Time Circuit-to-Hamiltonian construction

Quantum circuit Q in D dimensions

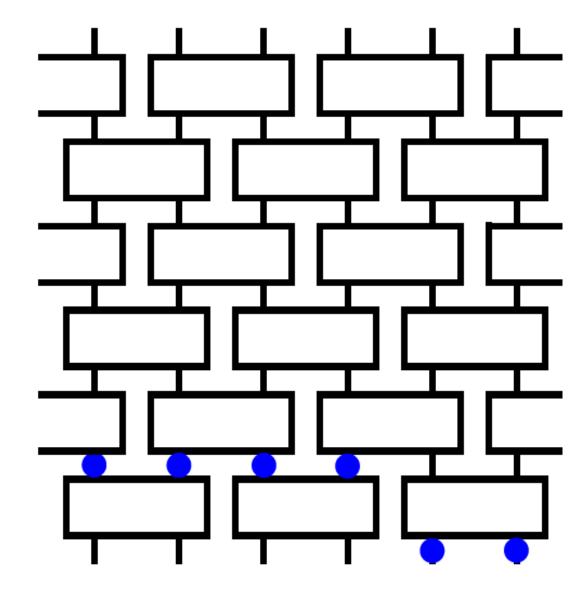


Hamiltonian in D+1 dimensions with unique ground-state which is history state of the quantum circuit, i.e. uniform superposition of all partial completions of the circuit Q

How?

With each qubit q in Q we associate a clock which is represented as 1D line. A spin-1/2 particle hopping on a 1D line.

When qubits undergo joint dynamics (as in 2-qubit gate U), both their clock-times are both moved forward or backward.

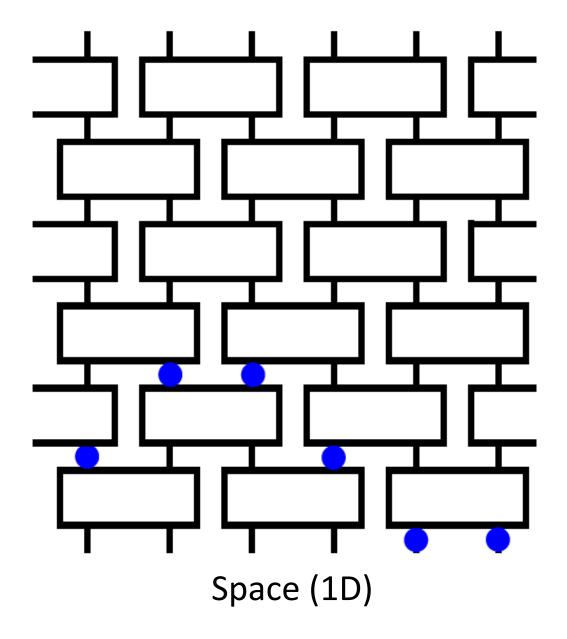


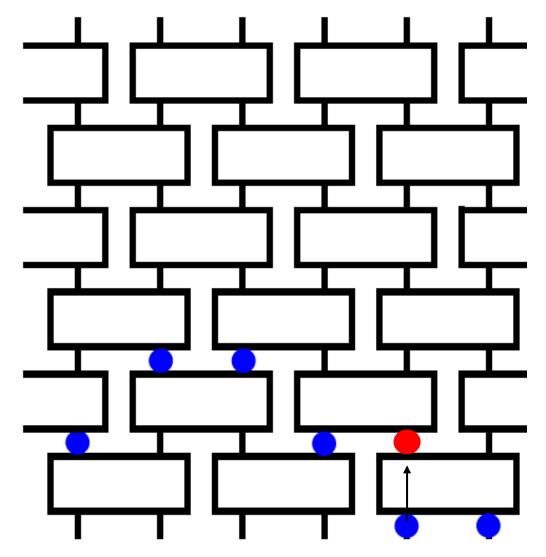
Possible

clock-configuration

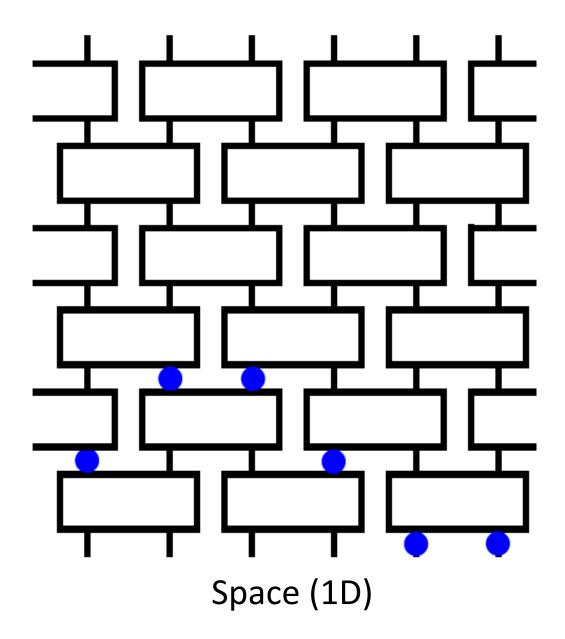
Previously time, now represented as space

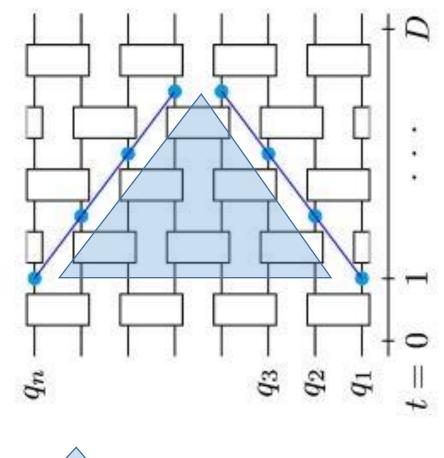
Space (1D)





Configuration with higher energy corresponding to an acausal configuration for the clocks.

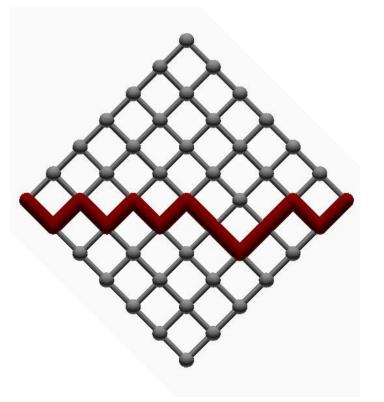




= Past light-cone

Computation by string propagation

Time



Space (1D)

- Spin-1/2 particles on edges: one particle per vertical line.
- Represents a 1D circuit where gradually qubits get added at the boundaries (expansion) and then are gradually stopped at the boundaries (contraction).
- Each square plaquette represents a 2-qubit gate
- Adiabatic or Time-Independent Computation

2D circuit: membrane computation, quantum crystal growth.

References

- S. Lloyd and B.M. Terhal, Adiabatic and Hamiltonian computing on a 2D lattice with simple 2-qubit interactions, arxiv.org/1509.01278
- D. Gosset, B.M. Terhal, A. Vershynina, *Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction*, Phys. Rev. Lett. 114, 140501 (2015)
- N. Breuckmann and B.M. Terhal, *Space-Time Circuit-to-Hamiltonian Construction and Its Applications,* Jour. Phys. A: Math. Theo Vol. **47** 195304 (2014)
- Margolus (1989) *Quantum Computation*. Via an asynchronous cellular automaton.
- Janzing (2007) Spin-1/2 particles moving on 2D lattice with nearest-neighor interactions can realize an autonomous quantum computer.
- Mizel, Mitchell, Cohen (2001) and Mizel, Lidar, Mitchell (2007), Ground state computation for universal adiabatic use.